Adaptive Eigenvalue Computation for Elliptic Operators

نویسندگان

  • W. Dahmen
  • T. Rohwedder
  • R. Schneider
  • A. Zeiser
چکیده

This article is concerned with recent developments of adaptive wavelet solvers for elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the preconditioned perturbed iteration. We apply the iteration to a simple model problem in order to identify the main ideas which a numerical realization of the abstract scheme is based upon. This indicates how these concepts carry over to wavelet discretizations. Finally we present numerical results for the Poisson eigenvalue problem on an L-shaped domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A convergent adaptive method for elliptic eigenvalue problems and numerical experiments

We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines el...

متن کامل

Adaptive finite element methods for computing band gaps in photonic crystals

In this paper we propose adaptive finite element methods for computing the band structure of 2D periodic photonic crystals and of photonic crystal fibres, modelled as spectral problems for Maxwell’s equations under either TM or TE polarisation. With the application of the Floquet transform the problem of computing the spectrum can be reduced to the computation of the discrete spectra of each me...

متن کامل

An Iterative Finite Element Method for Elliptic Eigenvalue Problems

We consider the task of resolving accurately the nth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate n e...

متن کامل

Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations

We consider a new adaptive finite element (AFEM) algorithm for self-adjoint elliptic PDE eigenvalue problems. In contrast to other approaches we incorporate the inexact solutions of the resulting finite dimensional algebraic eigenvalue problems into the adaptation process. In this way we can balance the costs of the adaptive refinement of the mesh with the costs for the iterative eigenvalue met...

متن کامل

A Convergent Adaptive Method for Elliptic Eigenvalue Problems

We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H1. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009